
Package: QGA (via r-universe)
September 10, 2024

Type Package

Title Quantum Genetic Algorithm

Version 1.0

Date 2024-05-28

Description Function that implements the Quantum Genetic Algorithm,
first proposed by Han and Kim in 2000. This is an R
implementation of the 'python' application developed by
Lahoz-Beltra
(<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>).
Each optimization problem is represented as a maximization one,
where each solution is a sequence of (qu)bits. Following the
quantum paradigm, these qubits are in a superposition state:
when measuring them, they collapse in a 0 or 1 state. After
measurement, the fitness of the solution is calculated as in
usual genetic algorithms. The evolution at each iteration is
oriented by the application of two quantum gates to the
amplitudes of the qubits: (1) a rotation gate (always); (2) a
Pauli-X gate (optionally). The rotation is based on the theta
angle values: higher values allow a quicker evolution, and
lower values avoid local maxima. The Pauli-X gate is equivalent
to the classical mutation operator and determines the swap
between alfa and beta amplitudes of a given qubit. The package
has been developed in such a way as to permit a complete
separation between the engine, and the particular problem
subject to combinatorial optimization.

License GPL (>= 2)

Encoding UTF-8

LazyLoad yes

Depends R (>= 3.5.0)

Suggests knitr

NeedsCompilation no

URL https://barcaroli.github.io/QGA/,

https://github.com/barcaroli/QGA/

1

https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms
https://barcaroli.github.io/QGA/
https://github.com/barcaroli/QGA/

2 QGA

BugReports https://github.com/barcaroli/QGA/issues

VignetteBuilder knitr

RoxygenNote 7.3.1

Repository https://barcaroli.r-universe.dev

RemoteUrl https://github.com/barcaroli/qga

RemoteRef HEAD

RemoteSha c66985190159a6aad751a9b092abe0b9e5e8c1a7

Contents

QGA . 2

Index 6

QGA Quantum Genetic Algorithm

Description

Main function to execute a Quantum Genetic Algorithm

Usage

QGA(
popsize = 20,
generation_max = 200,
nvalues_sol,
Genome,
thetainit = 3.1415926535 * 0.05,
thetaend = 3.1415926535 * 0.025,
pop_mutation_rate_init = NULL,
pop_mutation_rate_end = NULL,
mutation_rate_init = NULL,
mutation_rate_end = NULL,
mutation_flag = TRUE,
plotting = TRUE,
verbose = TRUE,
progress = TRUE,
eval_fitness,
eval_func_inputs,
stop_limit = NULL

)

https://github.com/barcaroli/QGA/issues

QGA 3

Arguments

popsize the number of generated solutions (population) to be evaluated at each iteration
(default is 20)

generation_max the number of iterations to be performed (default is 200)

nvalues_sol the number of possible integer values contained in each element (gene) of the
solution

Genome the length of the genome (or chromosome), representing a possible solution

thetainit the angle (expressed in radiants) to be used when applying the rotation gate
when starting the iterations (default is pi * 0.05, where pi = 3.1415926535)

thetaend the angle (expressed in radiants) to be used when applying the rotation gate at
the end of the iterations (default is pi * 0.025, where pi = 3.1415926535)

pop_mutation_rate_init

initial mutation rate to be used when applying the X-Pauli gate, applied to each
individual in the population (default is 1/(popsize+1))

pop_mutation_rate_end

final mutation rate to be used when applying the X-Pauli gate, applied to each
individual in the population (default is 1/(popsize+1))

mutation_rate_init

initial mutation rate to be used when applying the X-Pauli gate, applied to each
element of the chromosome (default is 1/(Genome+1)))

mutation_rate_end

final mutation rate to be used when applying the X-Pauli gate, applied to each
element of the chromosome (default is 1/(Genome+1))

mutation_flag flag indicating if the mutation gate is to be applied or not (default is TRUE)

plotting flag indicating plotting during iterations

verbose flag indicating printing fitness during iterations

progress flag indicating progress bar during iterations

eval_fitness name of the function that will be used to evaluate the fitness of each solution
eval_func_inputs

specific inputs required by the eval_fitness function

stop_limit value to stop the iterations if the fitness is higher

Details

This function is the ’engine’, which performs the quantum genetic algorithm calling the function
for the evaluation of the fitness that is specific for the particulare problem to be optmized.

Value

A numeric vector (positive integers) giving the best solution obtained by the QGA

4 QGA

Examples

#--
Fitness evaluation for Knapsack Problem
#--
KnapsackProblem <- function(solution,

eval_func_inputs) {
solution <- solution - 1
items <- eval_func_inputs[[1]]
maxweight <- eval_func_inputs[[2]]
tot_items <- sum(solution)
Penalization
if (sum(items$weight[solution]) > maxweight) {

tot_items <- tot_items - (sum(items$weight[solution]) - maxweight)
}
return(tot_items)

}
#--
Prepare data for fitness evaluation
items <- as.data.frame(list(Item = paste0("item",c(1:300)),

weight = rep(NA,300)))
set.seed(1234)
items$weight <- rnorm(300,mean=50,sd=20)
hist(items$weight)
sum(items$weight)
maxweight = sum(items$weight) / 2
maxweight
#----------------------
Perform optimization
popsize = 20
Genome = nrow(items)
solutionQGA <- QGA(popsize = 20,

generation_max = 500,
nvalues_sol = 2,
Genome = nrow(items),
thetainit = 3.1415926535 * 0.05,
thetaend = 3.1415926535 * 0.025,
pop_mutation_rate_init = 1/(popsize + 1),
pop_mutation_rate_end = 1/(popsize + 1),
mutation_rate_init = 1,
mutation_rate_end = 1,
mutation_flag = TRUE,
plotting = FALSE,
verbose = FALSE,
progress = FALSE,
eval_fitness = KnapsackProblem,
eval_func_inputs = list(items,

maxweight))
#----------------------
Analyze results
solution <- solutionQGA[[1]]
solution <- solution - 1
sum(solution)

QGA 5

sum(items$weight[solution])
maxweight

Index

QGA, 2

6

	QGA
	Index

